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Executive Summary 

HARTU has developed a set of simulation tools (SimEnv) to help system integrators configure some 

features of a handling application. This document describes these tools. 

SimEnv includes the SyntheticImageDatasetGenerator component, which assists in the creation of 

a synthetic image dataset using Unity. The dataset will be used to train an object detection 

YOLOv5 model whose output will be part of the input to a generic object segmentation model to 

perform the segmentation of the object in a real scene.  

The SimEnv component of the HARTU reference architecture includes also the 

LocalGraspPointTester component, which assists in the validation of grasping points proposed by 

LocalGraspModeller, and GlobalGraspPolicyTester component, which assists the 

GlobalGraspModeller in defining the GlobalGraspModel to decide which object in a cluttered 

scene is the best candidate to be picked up. 

These components included in SimEnv use two well-known simulation engines: Unity as a general 

framework and for the generation of realistic images, and MuJoCo as a physics engine. 

In addition, the Learning from Demonstration component also uses MuJoCO to record, refine, and 

pre-evaluate the assembly skills demonstrated by the user. While the recording of skills will mainly 

be done in real-world scenarios, the refinement of skills via Inverse Reinforcement Learning, can 

only be done in simulation, as it usually requires many evaluations. 

This simulation environment is not intended to simulate the complete sequence of actions in a 

handling or assembly robotic application, but to assist the system builder in configuring it. 
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1 Introduction 
Two key steps in materials handling are the identification of the object to be picked up and the 

decision on how to pick it up. 

HARTU proposes to facilitate the definition of both actions through AI in such a way that human 

intervention is reduced to a minimum. Two components of the HARTU reference architecture will 

provide the models for segmenting the objects in an image and for defining the grasping points of 

that object. 

 
Figure 1. SimEnv component in the HARTU reference architecture 

The SegmentModeller uses deep learning techniques to create models for segmenting objects in 

an image. Deep learning requires having many labelled images of the object, but this is not always 

an easy task. Image labelling is a time-consuming task. Among the various strategies to cope with 

this problem, one is the use of synthetic images with auto-generated labels to train a 

segmentation model. This is the first goal of the SyntheticImageDatasetGenerator component 

included in the HARTU’s Simulation Environment (SimEnv). 

The LocalGraspModeller component is responsible for defining the feasible grasping points for a 

product-gripper pair. Its approach starts by identifying geometrically valid grasping points (e.g., 

those that fit between the fingers of a parallel gripper). However, this is not enough, it is necessary 

to verify which of them are actually valid, i.e., that when the gripper closes and tries to move the 

part, it does so without the part moving in the gripper nor falling out. For this, LocalGraspModeller 

will use the LocalGraspPointTester component included in SimEnv that will test the grasping 

operation and return a metric of the quality of the grasping process. 

These two components included in SimEnv (i.e. SyntheticImageDatasetGenerator and 

LocalGraspPointTester) use two well-known simulation engines: Unity as a general framework and 
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for the generation of realistic images, and MuJoCo as a physics engine (see sections ¡Error! No se 

encuentra el origen de la referencia. and 1.2 for a brief introduction to these). 

But identifying the grasping point of an object is not enough to decide which object should be 

chosen in a scene containing multiple instances of the object. HARTU will provide a 

GlobalGraspModel to decide which object to pick in a complex scene. To solve this sequential 

decision-making problem, the GlobalGraspModeller component uses Deep Reinforcement 

Learning (DRL). 

DRL aims to create an agent that, given a number of grasping point candidates, selects the most 

suitable one for each scene. The agent validates the quality of its proposal by sending it to the 

GlobalGraspPolicyTester component included in the SimEnv, which will execute the action 

(attempt to grasp the object from the selected grasping point) and send back the result of the 

grasping simulation (the reward). The agent then uses the reward received from the simulation to 

train a neural network, and consequently optimise its behaviour for the next iterations. The long-

term goal of the agent is to maximise the accumulated reward in a picking sequence.  

These functionalities offered by SimEnv, which will be explained in the next sections, are 

accessible from the AppManager GUI, as shown in Figure 2. 

 
Figure 2. AppManager GUI draft 

 

In addition, the Learning from Demonstration component also uses MuJoCO to record, refine, and 

pre-evaluate the assembly skills demonstrated by the user. While the recording of skills will mainly 

be done in real-world scenarios, the refinement of skills via Inverse Reinforcement Learning, can 

only be done in simulation, as it usually requires many evaluations. 
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1.1 Unity 

Unity1 is a widely used cross-platform game engine and development tool primarily utilized to 

create video games for various platforms, including mobile devices, consoles, computers, and the 

web. It was developed by Unity Technologies and first released in 2005. 

Unity offers a user-friendly interface and a comprehensive set of tools that allow developers to 

create 2D, 3D, augmented reality (AR), and virtual reality (VR) experiences. It supports a wide 

range of programming languages like C#, JavaScript, and Boo. 

Unity's popularity stems from its versatility, ease of use, extensive community support, and the 

ability to deploy projects across multiple platforms. 

Key features of Unity include: 

1. Multiplatform support: Unity allows developers to build games and applications for 

various platforms like iOS, Android, Windows, macOS, Linux, PlayStation, Xbox, and more. 

2. Asset Store: A vast marketplace where developers can find and purchase various assets, 

including 3D models, textures, sound effects, plugins, and tools, to enhance their projects. 

3. Visual Editor: Unity provides a robust visual editor that simplifies the process of designing 

and developing games and applications. It includes features for scene editing, animation, 

physics, lighting, and more. 

4. Scripting: Developers can use C# (Unity's primary programming language) or other 

supported languages to write code and implement game logic. 

5. Physics and Animation: Unity includes built-in physics engines and tools for creating and 

managing animations, making it easier to simulate realistic movements and interactions. 

6. AI and Networking: It offers functionalities for implementing artificial intelligence (AI) 

behaviours and network functionalities for multiplayer games. 

1.2 MuJoCo2 

MuJoCo stands for "Multi-Joint dynamics with Contact." It is a physics engine designed primarily 

for simulating and controlling articulated biomechanical and robotic systems. Developed by Emo 

Todorov at the University of Washington, MuJoCo is widely used in research, robotics, 

biomechanics, and reinforcement learning. 

Key features of MuJoCo include: 

1. Efficient Physics Simulation: MuJoCo is known for its efficient simulation of rigid body 

dynamics, contact mechanics, and kinematics. It accurately models the behavior of 

articulated mechanisms and complex interactions between objects. 

 
1 https://www.unity.com  
2 https://www.mujoco.org  

https://www.unity.com/
https://www.mujoco.org/
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2. Flexible Modelling: It allows users to model systems with multiple interconnected bodies 

and joints. This flexibility is particularly useful for simulating robotic systems, humanoids, 

and other articulated structures. 

3. Control and Simulation: MuJoCo offers tools for controlling and simulating various types of 

systems. It allows users to apply control strategies, test different algorithms, and evaluate 

the behavior of dynamic systems in a simulated environment. 

4. Integration with Machine Learning: MuJoCo is often used in reinforcement learning and 

machine learning research. Its efficient simulation capabilities make it suitable for training 

agents in complex environments, enabling researchers to develop and test algorithms for 

robotics and AI. 

5. Commercial and Academic Use: MuJoCo offers both commercial and academic licenses. 

Many academic institutions and research labs utilize MuJoCo for studying biomechanics, 

control systems, robotics, and machine learning applications. 

 

2 Simulation to support image segmentation 

2.1 Objective 

The ultimate goal is to create a dataset of self-labelled realistic images of an object from its CAD 

model and other human input parameters. 

2.2 HARTU Solution 

SimEnv includes the SyntheticImageDatasetGenerator component, which assists in the creation of 

a synthetic image dataset using Unity. 

Each image will be a different scene, containing a variable number of objects in random positions, 

with different types of occlusions and different values of external parameters, such as lighting, in 

order to have a great variability of situations approximating real environments. The simulation 

provides information on the position of the objects in the scene, the occlusions present and 

whether or not objects are visible from a top view. 

The dataset will be used to train an object detection YOLOv5 model whose output will be part of 

the input to a generic object segmentation model to perform the segmentation of the object in a 

real scene.  

2.2.1 Integration in Unity 

SyntheticImageDatasetGenerator is instantiated as a set of scripts in Unity Version 2020.3.48f1. 

This instantiation is deployed as an executable file, so no license fee is required for its use. 
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2.2.2 Included functionalities 

2.2.2.1 Virtual part definition 

HARTU uses the OBJ CAD format, which includes information on geometry and materials. For 

those other standard CAD formats (e.g., STL) that do not contain information on the materials and 

visual appearance of the various components they represent, it will be necessary to convert to OBJ 

and them assign the materials manually. 

Basic Mode 

The user introduces a new part by defining a (unique) Name and loading the corresponding CAD 

file in .obj format. 

The CAD file can include several components of different materials and visual properties. The 

graphical interface allows you to define these characteristics for each component: the material, 

the virtual appearance and the colour (using the RAL standard). 

 
Figure 3. Definition of the materials and properties of a part. Basic Mode 

The results of the configuration are stored in a folder with the following naming convention: 

objectName.hartudescr. 

The interface provides basic materials and visual appearance templates. The user can create 

others directly in Unity. The images below show examples of a product of the same material (e.g., 

iron) with different visual textures. 
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Figure 4. Rusted iron texture applied to a 
cube 

 

Figure 5. Rusted iron texture applied to a 
cube 

 
Figure 6. Rusted iron with streaks 
texture applied to a cube 

 

Figure 7. Beaten up metal texture 
applied to a cube 

 
Figure 8. Metal rust coated texture 
applied to a cube 

 
Figure 9. Metal rusting textured texture 
applied to a cube 

Next pictures show examples of a product of the same material (scuffed iron), the same texture 

and different colours. 

 
Figure 10.Rusted iron texture with RAL 
9010 

 
Figure 11. Rusted iron texture with RAL 
3011 

 
Figure 12. Rusted iron texture with RAL 
5017 

 

Advanced Mode 

The advanced mode allows the user to configure more parameters that define the appearance of 

an object (using Unity it is possible to define many others). 

As in Basic mode, the user enters a new part by defining a (unique) Name and loading the 

corresponding CAD file in .obj format. 

The CAD file can include several components of different materials and visual properties. The 

graphical interface allows you to define these characteristics for each component:  
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• The material 

• Colour: using RAL standard and colour texture (optional) 

• Normal texture (optional): it represents the behaviour of light on the surface of the object 

• Metallic texture (optional): it represents the degree of metallisation of a surface. When 

using textures, a geometry can be partially defined as metallic while the other parts could 

not be metallic (e.g. corroded copper’s metallic texture will be partially metallic as the 

copper is, and the corroded part will not behave as metallic surface). 

• Ambient occlusion texture (optional): this texture defines to what extent different parts of 

the object are exposed to ambient lighting. Ambient occlusion textures are very common 

in materials that have very irregular surfaces and generate shadows on them (e.g. textures 

which represent corrugated plates). 

• The degree of surface roughness: On a scale from 0 to 1, this parameter defines whether 

the surface of the object is rough or smooth. 

• The degree of metallic appearance: On a scale from 0 to 1, this parameter defines the 

metallicity of an object. This parameter must be defined in case the user does not load a 

metallic texture. If so, this value will be ignored. 

 
Figure 13. Advanced mode product configuration 

The results of the configuration are stored in a folder with the following naming convention: 

objectName.hartudescr 

2.2.2.2 Simulation settings for the generation of random image dataset 

Once the visual appearance of the object has been defined, the user can define the parameters 

that will determine the generation of images for the dataset. 

The user selects the part reference for the dataset and the number of images in the dataset. To 

understand how this number is defined, we will introduce the concept of a ‘round’ and how the 

simulation works. 
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The user defines the minimum number of parts in the scene to start recording the image, and the 

total number of parts in each round. A round starts with the SyntheticImageDatasetGenerator 

throwing a part into the scene, the part will collide with the base/wall of the box or the surface 

(this is user-selected), and its final position is determined by the physics of the collision. A second 

piece is launched and its final position will depend on how it collides with the previous piece or the 

surface of the box, this process will continue until the total number of parts in the scene is 

reached. 

SyntheticImageDatasetGenerator will start recording images when the user-defined minimum 

number of parts in the scene is reached. Then, for each new part in the scene, the systems 

records: 

▪ An RGB image of the scene with all parts 

▪ A segmented image of all parts 

▪ A set of images, each containing one of the segmented pieces. These images are used as 

labels of the RGB image. 

All the images are stored in PNG format in folders according to this naming convention: 

PartName_SceneName 

Let’s suppose that the user selects the CAD of a hammer and the following parameters: 

▪ Number of Rounds: 4 

▪ Minimum number of parts in the scene: 3 

▪ Maximum number of parts in the scene: 5 

The sequence in a round can be as follows: 

     
 

The system will start recording after the 3rd sequence, for which it will generate the following 5 

images: 
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Figure 14.RGB Image 

 
Figure 15. Segmented image with all parts 

 

 
Figure 16. Part #1 segmented 

 
Figure 17. Part #2 segmented 

 
Figure 18. Part #3 segmented 

 

At launch 4 the number of images generated is 6, at launch 5 it is 7, and in general for X number of 

parts it will generate X+2 images. 

The definition of a picking scene is done through this interface: 
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Figure 19.Settings for random generation of image dataset 

The scene is stored and can be retrieve using a unique identifier (Name). The following parameters 

can be set: 

Round: 

• Number of rounds 

• Minimum number of objects to start recording 

• Maximum number of objects to end the round 

Type of distribution: 

• Regular Mosaic 

• Quincunx-like mosaic 

• Random distribution 

 

Figure 20.Example of regular mosaic 

 

Figure 21.Example of quincunx-like mosaic 

In the case of Mosaic distribution, these additional parameters: 

• Number of rows 

• Number of columns 

• Rows distribution 

• Columns distribution 

• Rotation of the part in the position: 
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o X, Y, Z 

o The user can also define a tolerance range to be used for randomization. 

Container: 

It has to be defined whether the objects are to be distributed on a flat surface or inside a box. In 

addition, texture and brightness of the surface or the box have to be defined. 

In the case of parts in a box, its size (length, width and height) must be defined. 

Main Light 

It defines the lighting conditions of the scene: 

• Light intensity and range between 0 to 8, where 0 represents darkness (default value is 1) 

of valid values (for randomization) 

• Colour 

• Angle of incidence 

Camera 

It defines the main parameters of the vision system that will be used to simulate the image 

acquisition. 

• The camera model. The system allows selection between Photoneo, ZED2i (4mm and 

2.1mm focal length), Intel Realsense D435 or Custom (for manual configuration of the focal 

length and sensor size). 

• The height position of the camera in relation to the bottom of the box/surface 

• Focal length 

• Sensor size (x,y) 

The images generated during the dataset creation are stored in the above-mentioned folder with 

the following naming convention: yyyymmdd_hhmmss_imageType.png, where: 

• The first and second parts of the image name correspond to the date and time the image 

was taken in numerical format. 

• The last part of the name defines which type of image it is. There are 3 types of images: 

o defaultImage: corresponds to a render as the real camera would provide. 

o segmented: The result of the segmentation all the objects in the scene. 

o segmentedObjXXX: For each object in the scene, we export its isolated 

segmentation. The last part of the name corresponds to the number of the 

segmented object. 

The preview area shows how the defined camera would view the scene with the different 

parameters the user has entered. As the user modifies the different configuration parameters, this 

scene preview updates its state showing the resulting scene. The range associated to some 

parameters allows to configure the randomization for that parameter. 

The user can load a previously defined configuration and run it through this interface: 
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Figure 22. interface to create the image dataset 

3 Simulation to support grasp point model creation 

3.1 Objective 

Twofold objective: 

• To provide a simulation mechanism to test the grasping points proposed by the 

LocalGraspModeller, providing a metric of the quality of the grasp. 

• To provide a simulation environment that the GlobalGraspModeller component uses in its 

Deep Reinforcement Learning approach to create the GlobalGraspModel. 

3.2 HARTU Solution 

HARTU includes (1) the LocalGraspPointTester component, which assists in the validation of 

grasping points proposed by LocalGraspModeller, and (2) GlobalGraspPolicyTester component, 

which assists the GlobalGraspModeller in defining the GlobalGraspModel. 

For this purpose, the two components mentioned above use the MuJoCo physics engine, which is 

integrated in Unity. 

The version used is MuJoCo 2.3.2 and the integration is through a plugin. 

MuJoCo is primarily a physics engine designed for simulating and controlling articulated 

biomechanical and robotic systems. It focuses on accurately simulating the dynamics of articulated 

mechanisms, handling complex interactions between rigid bodies, joints, and contact forces. 

Unity, on the other hand, is a versatile game and application development platform used for 

creating a wide range of interactive experiences beyond just physics simulations. 

While both MuJoCo and Unity involve simulations and physics, MuJoCo is tailored for high-

precision physics modelling of articulated systems, while Unity offers a more comprehensive suite 

of tools and features for creating diverse interactive content. 
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This is why. HARTU has chosen MuJoCo to validate in simulation the grasping points proposed by 

the various components. 

Although MuJoCo offers some functionalities in its standalone version that are not available in the 
Unity plugin, this integration offers greater visual fidelity and easier and more intuitive scene 
modelling. 

In addition, Unity allows communicate with UnityROS2Control, to control the robotic arm with 
MoveIt. Finally, is should be noted that through this integration of MuJoCo in Unity it is possible to 
generate objects dynamically, which is very complex in MuJoCo standalone. 

However, there are some drawbacks in MuJoCo that have required the development of some 

functionalities by HARTU, as described in the following sections. 

3.2.1 Non-Convex shapes management 

MuJoCo only is able to handle convex shape geometries.  

In geometry, a convex geometry refers to a shape, set of shapes, or a structure that possesses 

specific characteristics that define convexity. Convexity relates to the shape's properties with 

respect to its internal angles, boundaries, and the arrangement of its points. 

A convex geometry or shape is defined by the following key characteristics: 

1. Convexity: A shape is convex if, for any two points within the shape, the line segment 

joining those points lies completely inside the shape. In other words, any line segment 

drawn between any two points inside the shape remains entirely contained within the 

shape itself. 

2. No Interior Angles Greater Than 180 Degrees: In a convex shape, all interior angles formed 

by connecting any two points within the shape are less than or equal to 180 degrees. There 

are no inward-facing angles (concave angles) within the shape. 

3. Boundary and Contour: The boundary or the perimeter of a convex shape does not 

intersect itself, and any straight line drawn between any two points on the boundary 

remains within the shape or on the boundary itself. 

Examples of convex shapes include: 

• Circles 

• Regular polygons (e.g., equilateral triangle, square, pentagon) 

• Convex quadrilaterals (e.g., parallelograms, rectangles, rhombi) 

• Convex polyhedrals (3D shapes where all faces are convex polygons) 

• Spheres and ellipsoids (in higher dimensions) 

Convex shapes have numerous applications in various fields, including mathematics, geometry, 

computer science, optimization, physics, and engineering. Their properties make them easier to 

analyse mathematically and computationally, so they are often used in algorithms, modelling and 

problem-solving. 
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MuJoCo primarily deals with convex geometries in its simulations. It is designed to efficiently 

handle articulated rigid body dynamics and contact in the context of convex shapes. However, 

dealing with non-convex geometries or complex deformable objects (such as soft bodies) are not 

within MuJoCo's core capabilities. Simulating non-convex shapes or deformable objects often 

requires different techniques, such as finite element methods or specialized algorithms designed 

explicitly for non-convex geometries. 

As many products in industry are non-convex, HARTU has developed a functionality that allows the 

behaviour of these products to be simulated. 

It uses the obj2mjcf command-line interface (CLI), which uses the V-HACD library, to decompose a 

mesh into a set of simpler convex hulls that approximate the original shape's geometry. The 

convex hull or convex envelope or convex closure of a shape is the smallest convex set containing 

the shape. 

An example of the application of this function to a non-convex geometry is presented in the 

following pictures (using a toroid as an example). 

This decomposition process is essential in physics simulations and collision detection. 

  
Figure 23. Left: original toroid; right: its convex hull 

 
Figure 24. Toroid decomposed in 128 convex sub geometries 
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In HARTU this process is done via a script that reads the CAD from a folder and generates all the 

convex submeshes using obj2mjcf and V-HACD. Then, the resulting MJCF generated by obj2mjcf is 

modified and enhanced to import the XML into the Unity-MuJoCo simulation. 

3.2.2 Modelling of grasping tools 

The MuJoCo simulation environment contains a set of modelled grippers. HARTU offers the 

capability to redefine certain key parameters that model the behaviour of these grippers, as seen 

below. 

3.2.2.1 Parallel Jaw Grippers 

These grippers have two opposing fingers or jaws that move in parallel. 

The parameters that the user can define for modelling the gripper are: 

• Geometry of the fingers, selected among a group of predefined finger options. 

• Stroke per jaw. 

• Closing force. 

• The material. This parameter is used to set the proper MuJoCo parameters that will 

simulate the behaviour of the real material counterpart. 

 
Figure 25. Interface for gripper configuration 

To estimate this last parameter, HARTU has developed its own methodology. The experiments are 

carried out both in simulation and in reality, using the same setup, consisting of an object of the 

material for which we want to estimate the MuJoCo properties, a Universal Robot UR10 and a 

ROBOTIQ gripper. For a given set of MuJoCo parameters, an external camera measures the final 

position of the object after the grasping operation. The final position of the object in the simulated 

and real environment are compared and the parameters are iteratively adjusted until the 

difference is below a threshold. 

This procedure should be used for each material-gripper pair. 
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Figure 26. Simulated environment to estimate the parameters. 

 

 
Figure 27. Real environment to estimate the parameters. 

3.2.2.2 Three-Fingered Grippers 

These grippers have three fingers that can move independently or in a coordinated manner to 

grasp objects. 

The parameters that the user can define for modelling the gripper 

are: 

• Geometry of the fingers, selected among a group of 

already defined fingers. 

• Stroke per jaw. 

• Closing force. 

• The material. This parameter is used to set the proper 

MuJoCo parameters that will simulate the behaviour of the 

real material counterpart. 

3.2.2.3 Suction Cup Grippers 

Suction cup grippers use vacuum suction to hold objects. 

As mentioned above, the simulation of flexible objects (such as 

some suction cups) is not straightforward in MuJoCo. So, it has 

been necessary to develop our own suction cup modelling 

functionality. 

 
Figure 28. Three-fingered gripper 

model 
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The proposed strategy is to model the suction cup as a set of small spheres linked among them by 

joints. 

 
Figure 29. Simulated suction cup in contact with a flat surface 

 
Figure 30. Simulated suction cup in contact with a curved 
surface 

The suction force provided by the suction cup can be estimated using the formula F=P×A, where P 

is the effective vacuum pressure inside the suction cup and A the contact area of the suction cup 

adhering to the surface. 

In the simulated contact between the suction cup and the object, the number of spheres in 

contact with the object it is measured. If a sphere is not in contact, the total force is 0; otherwise, 

it is the theoretical F force. 

 
Figure 31. All spheres in contact: total force is F 

 
Figure 32. A sphere is not in contact: total force is 0 

3.2.2.4 Magnetic Grippers 

Magnetic grippers use magnetic fields to hold onto ferromagnetic objects. 

The approach to modelling magnetic grippers is similar to that of the suction cup: the proposed 

strategy is to model the suction cup as a set of small spheres rigidly joined together (without joints 

in this case).  

In the proposed approach, the theoretic force provided by the magnetic gripper is distributed 

among all the spheres in contact with the surface of the object. In the simulated contact between 

the magnetic gripper and the object, the number of spheres in contact with the object it is 

measured. If a sphere is not in contact, it contributes a value of 0 to the total Force, otherwise, it 

contributes with its theoretical force F/N (where N is the total number of spheres used for the 

magnetic gripper simulation). 
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In the following example, the theoretical force of 40 N of the magnetic gripper is divided between 

the 25 spheres, so that each sphere can contribute 40/25 N, i.e. 1.6 N for each sphere in contact. 

 

 
Figure 33. All spheres in contact: total force is 40 N 

 
Figure 34. 6 spheres are not in contact: total force is 30.4N 
(19*1.6) 

 

3.2.2.5 Electroadhesive 

Initially, they will be assimilated to flexible suction cups. 

3.2.3 Included functionalities 

3.2.3.1 Isolated object grasping operation: LocalGraspPointTester component 

This functionality is used by the LocalGraspModeller in its strategy to define the valid grasping 

points for an object-gripper pair.  

The LocalGraspModeller passes a list of the geometrically possible grasping points to the 

LocalGraspPointTester component, which simulates the grasping operations for all elements in the 

list and returns for each of them a metric value of the quality of the grasping process. 

The testing procedure is as follows: After executing the grasp for each geometrically valid grasping 

point the gripper holds the object with closed fingers for approximately 4s metric. The initial 

version of the metric considers both the initial and final pose of the object with respect to the 

gripper, to calculate an error in that period. A large error indicates that the object has moved and 

therefore indicates an unstable grasp. The total score is a weighted sum of the translation and 

rotation error according to the equation: 

 

Where: 

• 𝑆𝑡𝑜𝑡𝑎𝑙 : Weighted score  

• 𝑊1 : Weight associated to the translation of the object 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑊1 ∙ 𝑆𝑑 +𝑊2 ∙ 𝑆𝑟  
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• 𝑊2 : Weight associated to the rotation of the object 

• 𝑆𝑑: Translation score. The average score per each axis 

• 𝑆𝑟 : Rotation score. The average score per each axis 

Table 1. Estimation of the score function components 

Measurement Error per axis Score 

Translation in X, 

Y y Z (𝑆𝑑) 

>1 cm  0 

< ε cm, where ε 
is near 0 cm 

1 

(ε,1] Linear interpolation 

between 0 and 1 

Rotation in X, Y y 

Z (𝑆𝑟) 

>90º  0 

<Θ , where Θ  is 

near 0º 

1 

(0º, 90º] Linear interpolation 

between 0 and 1 

Table 2: Estimation of the score function components 

In a future version of the metric, the full trajectory of the object during the grasp process will be 

considered. 

   

   
Figure 35. Testing various candidates 
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3.2.3.2 Object grasping operation in scenes with multiple objects: GlobalGraspPolicyTester 

component 

This functionality is used by the GlobalGraspModeller in its strategy to define the 

GlobalGraspModel. 

The GlobalGraspModeller generates a scene with N randomly arranged objects, it segments the 

image and selects one of the possible grasping points. It then requests the 

GlobalGraspPolicyTester to execute the grasp operation, which returns the following values: 

• The quality metric of the grasp operation 

• A vector with the values of the parameters characterising the scene 

GlobalGraspPolicyTester uses a simulated UR10 robot, for which a driver has been developed 

which allows using ROSControl (ROS2) from Unity. 

 
Figure 36. UR10 with integrated UnityROS2Control driver (left) and UR10 in RVIZ (right). The orange ghost of the arm represents 

the goal position. This is set using the MotionPlanning plugin in RVIZ. 
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4 Simulation to support learning from demonstration  

4.1 Objective 

The objective is to record, refine, and pre-evaluate user-demonstrated assembly skills in a simulated 

environment.  

While recording of skills will mainly take place in real-world scenarios, the refinement of skills via 

Inverse Reinforcement Learning can only be done in simulation, as it usually requires many 

evaluations. As we focus on assembly skills, physically realistic contacts are a key requirement for 

the simulation environment.   

4.2 HARTU solution 

Learning and control of assembly skills involves complex contact forces as well as real-time 

execution. It was decided to use MuJoCo as a simulator as it allows for multi-contact optimization 

and real-time performance (>= 1KHz).  Other engines have been evaluated (Gazebo with ODE 

physics, PyBullet), but rejected for different reasons.  

4.2.1 Robot Models 

The downside of MuJoCo is that it is less feature-rich than other simulators. Especially the creation 

of complex scenarios can be tedious job due to the lack of interfaces. To ease the burden of the 

programmer, two extensions have been developed: 

• A ROS2 interface for MuJoco which allows to access sensors and actuators in real-time. 

• A converter tool to transfer robot models from URDF to the MuJoCo-native MJX format.  

Up to now, two robotic systems have been modelled and tested in MuJoCo: 

• Franka Emika Panda (7 DoF) 

• Dual-arm KUKA iiwa robot (14 DoF) 

Both systems could be simulated with 1 KHz framerate.  

  
Figure 37. MuJoCo Simulator: KUKA Dual arm robot (left), Franka Emika Panda (right) 
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4.2.2 Task Board 

    

Figure 38 Nvidia Task Board (left), Task Board at DFKI (right) 

For evaluation purpose, a task board (Figure 38, right) has been constructed, similar to the Nvidia 

Task Board3 (Figure 38, left). It contains components of typical assembly tasks (gears, different 

peg-in-hole, plugs, …). The task board is available as CAD in the MuJoCo simulation. It can be used 

to  

• Benchmark robotic assembly solutions. 

• Improve physical models of robots and objects in the simulator. 

• Assess methods to reduce the simulation-reality gap. 

4.2.3 Interfaces 

To connect with the real-time control loop, a ROS2 interface has been developed for MuJoCo. It is 

based on the ROS2 Control framework and allows to switch between simulated and real robot 

without changing any of the higher-level interfaces.  

The ROS2 wrapper for MuJoCo will soon become open source on Github.  

4.2.4 URDF2MJCF Converter 

ROS2 uses URDF to model the kinematics and dynamics of robotic systems. For convenience a 

URDF2MJCF converter has been developed, where MJCF is the native XML-based modelling 

format in MuJoCo. After converting the URDF model to MJCF, usually some additional changes 

must be made manually, as a URDF model usually does not include all the MuJoCo features, e.g., 

surface friction.  

 

 
3 https://github.com/NVlabs/industrealkit/tree/main 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FNVlabs%2Findustrealkit%2Ftree%2Fmain&data=05%7C02%7C%7Cdec6e69b7b374ae14b2b08dbffd946f4%7C62f653bf9c21465bbdbf1b18ba164624%7C0%7C0%7C638385081511019141%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Yyqnk1kY%2BlHNoPHdXmVtqmPy7ngK2RWD9EWKJqBXvco%3D&reserved=0

